Research interests

  • biological transition metal catalysis and small-molecule activation
  • metalloenzymes and clean hydrogen transformation
  • functional protein dynamics, reaction site coupling, and non-classical catalysis
  • advanced vibrational spectroscopy: ultrafast, multidimensional, and in vivo techniques
  • descriptive and predictive computational chemistry

Awards (selection)

2018 Postdoctoral Research fellowship of the German Research Foundation

Dr. Marius Horch
FU Berlin
Department of Physics
Arnimallee 14
14195 Berlin
+49 (0)30 838-69505

Publications (selection)

C. Lorent, S. Katz, J. Duan, C. Kulka, G. Caserta, C. Teutloff, M. Winkler, T. Happe, M. Horch, I. Zebger, Shedding light on proton and electron dynamics in [FeFe] hydrogenase, Journal of the American Chemical Society 2020, 142, 5493–5497.

Y. Ilina, C. Lorent, S. Katz, J.-H. Jeoung, S. Shima, M. Horch, I. Zebger, H. Dobbek, X-ray crystallography and vibrational spectroscopy reveal the structure of the H2-binding intermediate of [NiFe] hydrogenases, Angewandte Chemie International Edition 2019, 58, 2–7.

M. Horch, J. Schoknecht, S. L. D. Wrathall, G. M. Greetham, O. Lenz, N. T. Hunt, Understanding the structure and dynamics of hydrogenases by ultrafast and two-dimensional infrared spectroscopy, Chemical Science 2019, 10, 8981–8989.

M. Horch, Rational redox tuning of transition metal sites: learning from superoxide reductase, Chemical Communications 2019, 55, 9148–9151.

N. J. Lindenmaier, S. Wahlefeld, E. Bill, T. Szilvasíd, C. Eberle, S. Yaoa, P. Hildebrandt, M. Horch, I. Zebger, M. Driess, An S-oxygenated [NiFe] complex modelling sulfenate intermediates of an O2-tolerant hydrogenase, Angewandte Chemie International Edition 2017, 56, 2208–2211.

M. Horch, P. Hildebrandt, I. Zebger, Concepts in bio-molecular spectroscopy: vibrational case studies on metalloenzymes, Physical Chemistry Chemical Physics 2015, 17, 18222–18237.

M. Horch, L. Lauterbach, M. A. Mroginski, P. Hildebrandt, O. Lenz, I. Zebger, Reversible active site sulfoxygenation can explain the oxygen tolerance of a NAD+-reducing [NiFe] hydrogenase and its unusual infrared spectroscopic properties Journal of the American Chemical Society 2015, 137, 2555–2564.

M. Horch, J. Schoknecht, M. A. Mroginski, O. Lenz, P. Hildebrandt, I. Zebger, Resonance Raman spectroscopy on [NiFe] hydrogenase provides structural insights into catalytic intermediates and reactions, Journal of the American Chemical Society 2014, 136, 9870–9873.

E. Siebert, M. Horch, Y. Rippers, J. Fritsch, S. Frielingsdorf, O. Lenz, F. Velazquez Escobar, F. Siebert, L. Paasche, U. Kuhlmann, F. Lendzian, M. A. Mroginski, I. Zebger, P. Hildebrandt, Resonance Raman spectroscopy as a tool to monitor the active site of hydrogenases, Angewandte Chemie International Edition 2013, 52, 5162–5165.

M. Horch, L. Lauterbach, M. Saggu, P. Hildebrandt, F. Lendzian, R. Bittl, O. Lenz, I. Zebger, Probing the active site of an O2-tolerant NAD+-reducing [NiFe]-hydrogenase from Ralstonia eutropha H16 by in situ EPR and FTIR spectroscopy Angewandte Chemie International Edition 2010, 49, 8026–8029.